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Abstract

Using the integral transform and the Cauchy singular integral equation methods, the problem of an interface crack

between two dissimilar piezoelectric layers under mechanical impacts is investigated under the permeable electrical

boundary condition on the crack surface. The dynamic stress intensity factors (DSIFs) of both mode-I and II are

determined. The effects of the crack configuration and the combinations of the constitutive parameters of the piezo-

electric materials on the dynamic response are examined. The numerical calculation of the mode-I plane problem in-

dicates that the DSIFs may be retarded or accelerated by specifying different combinations of material parameters. In

addition, the parameters of the crack configuration, including the ratio of the crack length to the layer width and the

ratio between the widths of two layers, exert a considerable influence on the DSIFs. The results seem useful for design of

the piezoelectric structures and devices of high performance. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials possess intrinsic electromechanical coupling effects, by virtue of which they have
found extensive applications in smart devices as electromechanical actuators and transducers. For example,
they are used in active vibration and noise suppression of sensors in space structures, rockets, weapon
systems, smart skin systems of submarines, and so on. The reliability of these structures depends on the
knowledge of applied mechanical and electric disturbances. When cracks are present, they may grow under
service load and affect the performance of structures. Due to the disadvantage of brittleness and low
fracture toughness of piezoelectric materials, a considerable number of research works have been carried
out to investigate the fracture behavior (see, e.g., Pak, 1990; Suo et al., 1992; Gao et al., 1997; Wang and
Han, 1999; Qin, 2000; Qin and Zhang, 2000).
As viewed from application, on one hand, piezoelectric systems are liable to meet dynamic loads in

service. On the other hand, some piezoelectric structures are usually designed to guide such signals as
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surface waves. In such cases, elastic waves are generated in a structure. In the presence of cracks, these
waves are reflected and refracted, causing higher stress concentration than under the corresponding static
loads. This may initiate an unstable crack growth and eventually the final failure of the structure.
Consequently, dynamic fracture analysis of piezoelectric materials has received a considerable attention
in the past decade. Li and Mataga (1996a,b) studied the dynamic crack propagation by means of the
Wiener–Hopf and Cagniard–de Hoop techniques. They treated the crack boundaries as electrically
conducting electrodes and a vacuum zone to meet Bleustein–Gulyaev waves. Using the integral transform
techniques, Chen et al. (1998) solved the problem of an anti-plane Griffith crack moving along an in-
terface of two dissimilar piezoelectric materials. Their results showed that the intensity factors of the anti-
plane stresses and electric displacements depend on the moving speed of the crack and the material
coefficients as well. Further, Chen and Yu (1997, 1998) investigated the anti-plane problems of a Griffith
crack and a semi-infinite crack subjected to electromechanical impacts. It was found that the dynamic
stress intensity factor (DSIF) depends not only on the mechanical impact, but on the electrical impact,
the piezoelectric and dielectric coefficients also. In addition, their analysis showed that for anti-plane
crack problems, the dynamic electric displacement intensity factor (DEDIF) always remains the same as
the corresponding static value. Chen and Karihaloo (1999) deduced the solutions of a mode-III crack
subjected to arbitrary electromechanical impacts. Narita and Shindo (1998) investigated the scattering of
Love waves by a surface-breaking crack in a piezoelectric laminated medium by means of the path-
integral technique. In addition, Shindo et al. (1996) presented a dynamic fracture analysis for a cracked
electric medium under a uniform electric field. To date, nevertheless, analysis on dynamic in-plane
problems is very limited. On the basis of the previous works, the transient response of a cracked strip
subjected to plane electromechanical impacts was investigated by Wang and Yu (2000) making use of the
integral transform and the singular integral equation methods. A great dependence of the DSIF and the
dynamic energy release rate (DERR) on such parameters as the loading combination parameter and
the ratio between the crack length and the strip width was illustrated. It was also found that in contrast
with the mode-III crack as aforementioned, the DEDIF of a mode-I crack exhibited a considerable
dynamic response.
As to crack face electrical boundary conditions, Suo et al. (1992) discussed several different assumptions

in detail. Especially, they examined two limit cases of crack face electrical boundary conditions, namely the
permeable condition and the insulating condition. More arguments about crack face electrical boundary
conditions can be found in the literatures (see, e.g., Pak, 1990; Suo et al., 1992; Gao et al., 1997; Shindo
et al., 1996). In this paper, the plane problem of an interface crack between two piezoelectric layers of finite
widths under mechanical impacts is analyzed under the permeable electrical boundary condition, by means
of the integral transform and the Cauchy singular integral equation methods. The dependence of the
transient response on the crack configuration and the constitutive parameters of the dissimilar piezoelectric
materials are discussed. For the special case of a homogeneous material, the results reduced from the
present analysis are compared with those obtained by Wang and Yu (2000).

2. Formulation of the problem

Consider an interface crack of length 2c located between two piezoelectric layers in the form of an
infinitely long strip subjected to mechanical impacts, as shown in Fig. 1. Refer to a Cartesian coordinate
system ðx; y; zÞ with the x-axis along the interface, and the z-axis normal to the interface and aligned with
the poling axis. Assume that the piezoelectric ceramic strip is thick enough in the y-direction to allow for
adopting the condition of plane strain. A complex impact load of tension and shearing is imposed on the
crack surfaces.
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Under the condition of plane strain, one has

ux ¼ uðx; z; tÞ; uy ¼ 0; uz ¼ wðx; z; tÞ; eyy ¼ 0;
Ex ¼ Exðx; z; tÞ; Ey ¼ 0; Ez ¼ Ezðx; z; tÞ;

ð1Þ

where ui and Ei denote the displacement and electric field vectors, respectively. Introducing the electric
potential / by Ei ¼ �o/=oxi, the linear constitutive relations of a transversely isotropic piezoelectric ma-
terial are expressed as (Suo et al., 1992)

rxx ¼ c11u;x þ c13w;z þ e13/;z;

rzz ¼ c13u;x þ c33w;z þ e33/;z;

rxz ¼ c44u;z þ c44w;x þ e15/;x;

Dx ¼ e15u;z þ e15w;x � e11/;x;

Dz ¼ e13u;x þ e33w;z � e33/;z;

ð2Þ

where rxx, rzz and rxz are the stress components, Dx and Dz the electric displacement components, c11, c13,
c33 and c44 the elastic moduli, e13, e33 and e15 the piezoelectric coefficients, e11 and e33 the dielectric coeffi-
cients. The governing equations read

c11u;xx þ c44u;zz þ ðc13 þ c44Þw;xz þ ðe13 þ e15Þ/;xz ¼ q
o2u
ot2

;

ðc13 þ c44Þu;xz þ c44w;xx þ c33w;zz þ e15/;xx þ e33/;zz ¼ q
o2w
ot2

;

ðe13 þ e15Þu;xz þ e15w;xx þ e33w;zz � e11/;xx � e33/;zz ¼ 0;

ð3Þ

where q is the mass density.
The boundary conditions include the following three sets:

(i) Crack surface conditions ðjxj < c; z ¼ 0Þ

rð1Þ
xz ðx; 0; tÞ ¼ rð2Þ

xz ðx; 0; tÞ ¼ �s0HðtÞ;
rð1Þ
zz ðx; 0; tÞ ¼ rð2Þ

zz ðx; 0; tÞ ¼ �r0HðtÞ;
Dð1Þ

z ðx; 0; tÞ ¼ Dð2Þ
z ðx; 0; tÞ;

/ð1Þðx; 0; tÞ ¼ /ð2Þðx; 0; tÞ:

ð4Þ

where the superscripts (1) and (2) denote media 1 and 2, respectively, s0 and r0 are the given amplitudes
of the applied impact load, and HðtÞ is the Heaviside function. Here the interface crack is assumed to be
permeable (Suo et al., 1992).

Fig. 1. Crack configuration.

B. Gu et al. / International Journal of Solids and Structures 39 (2002) 1743–1756 1745



(ii) Continuity conditions on the interface ðjxj > c; z ¼ 0Þ

uð1Þðx; 0; tÞ ¼ uð2Þðx; 0; tÞ; wð1Þðx; 0; tÞ ¼ wð2Þðx; 0; tÞ;
/ð1Þðx; 0; tÞ ¼ /ð2Þðx; 0; tÞ;
rð1Þ
xz ðx; 0; tÞ ¼ rð2Þ

xz ðx; 0; tÞ; rð1Þ
zz ðx; 0; tÞ ¼ rð2Þ

zz ðx; 0; tÞ;
Dð1Þ

z ðx; 0; tÞ ¼ Dð2Þ
z ðx; 0; tÞ:

ð5Þ

(iii) Free boundary conditions ðjxj > 0Þ

rð1Þ
xz ðx; h1; tÞ ¼ rð1Þ

zz ðx; h1; tÞ ¼ 0; Dð1Þ
z ðx; h1; tÞ ¼ 0;

rð2Þ
xz ðx;�h2; tÞ ¼ rð2Þ

zz ðx;�h2; tÞ ¼ 0; Dð2Þ
z ðx;�h2; tÞ ¼ 0:

ð6Þ

3. Solution

Introducing the Laplace and Fourier transforms, the solutions of Eqs. (3) in the Laplace field, denoted
by the superscript *, can be expressed as

u�ðaÞðx; z; pÞ ¼ 1

2p

Z 1

�1

X6
j¼1

AðaÞ
j ðs; pÞek

ðaÞ
j z

" #
e�isx ds;

w�ðaÞðx; z; pÞ ¼ 1

2p

Z 1

�1

X6
j¼1

aðaÞj ðs; pÞAðaÞ
j ðs; pÞek

ðaÞ
j z

" #
e�isx ds;

/�ðaÞðx; z; pÞ ¼ 1

2p

Z 1

�1

X6
j¼1

bðaÞj ðs; pÞAðaÞ
j ðs; pÞek

ðaÞ
j z

" #
e�isx ds;

ð7Þ

where the superscript a ða ¼ 1; 2Þ stands for the corresponding medium. aðaÞj ðs; pÞ, bðaÞj ðs; pÞ and
kðaÞ
j ðs; pÞ ðj ¼ 1; . . . ; 6Þ are known functions of the Laplace variety p and the Fourier variety s (see Appendix
A), and the parameters AðaÞ

j ðs; pÞ ðj ¼ 1; . . . ; 6Þ are yet unknown.
Define the Laplace transformed dislocation density functions as (Wang and Yu, 2000)

f �ðx; pÞ ¼ o½u�ð1Þðx; 0; pÞ � u�ð2Þðx; 0; pÞ

ox

;

g�ðx; pÞ ¼ o½w�ð1Þðx; 0; pÞ � w�ð2Þðx; 0; pÞ

ox

:

ð8Þ

Substituting Eqs. (7) into the constitutive equations (2) and then into the Laplace transformed boundary
conditions in Eqs. (4)–(6) and using Eqs. (8), we obtain the following coupled singular integral equations:

AuðxÞ þ 1
p

Z c

�c
B

uðtÞ
t � x

dt þ 1
p

Z c

�c
Qðx; tÞuðtÞdt ¼ LðxÞ; ð9Þ

where A and B are two known constant matrixes with respect to the material constants in Eqs. (2), and
Qðx; tÞ is a known function matrix (Appendix B). Throughout the paper, a boldface stands for a matrix or a
vector. uðtÞ ¼ ½f �ðt; pÞ; g�ðt; pÞ
T is the dislocation density function vector to be solved, and LðxÞ ¼
½�s0=p;�r0=p
T is the known load vector. The single value condition is expressed asZ c

�c
uðtÞdt ¼ 0: ð10Þ
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Using x ¼ cr and t ¼ cu, Eq. (9) can be normalized in the form

AuðrÞ þ 1
p

Z 1

�1
B

uðuÞ
u� r

duþ c
p

Z 1

�1
Qðr; uÞuðuÞdu ¼ LðrÞ: ð11Þ

To solve the Cauchy singular integral equation (11) of the second type, an approximate method de-
scribed in Shen and Kuang (1998) is employed. The regularization of Eq. (11) leads to

wðrÞ þ 1
p

Z 1

�1

wðuÞ
u� r

duþ c
p

Z 1

�1
Qðr; uÞwðuÞdu ¼ LðrÞ; ð12Þ

where

wðuÞ ¼ R�1uðuÞ; Qðr; uÞ ¼ R�1B�1Qðr; uÞR; LðrÞ ¼ R�1B�1LðrÞ; ð13Þ
K and R are the eigenvalue matrix and the eigenvector matrix of the determinant (B�1A), respectively. They
satisfy the following equality:

B�1A ¼ RKR�1: ð14Þ
The solutions of Eq. (12) can be expressed in the form

wðxÞ ¼ W1ðxÞ 0
0 W2ðxÞ

� � P1
k¼0

AkP
ða1;b1Þ
k ðxÞ

P1
k¼0

BkP
ða2;b2Þ
k ðxÞ

2
664

3
775; ð15Þ

where P
ðaj;bjÞ
k ðxÞ ðj ¼ 1; 2Þ are the Jacobi polynomials, and WjðxÞ ¼ ð1� xÞajð1þ xÞbj is the weight function

of Jacobi polynomials with

aj ¼ � 1
2
þ i

2p
ln
1� icj
1þ icj

; bj ¼ � 1
2
� i

2p
ln
1� icj
1þ icj

; ð16Þ

where cj are the elements of the eigenvalue matrix K.
By considering the orthogonality relations of Jacobi polynomialsZ 1

�1
W ðxÞP ða;bÞ

k ðxÞP ða;bÞ
j ðxÞdx ¼

0 when k 6¼ j
hða;bÞ
k ¼ 2ðaþbþ1ÞCðaþkþ1ÞCðbþkþ1Þ

k!ðaþbþ2kþ1ÞCðaþbþkþ1Þ when k ¼ j ;

(
ð17Þ

in conjunction with P ða;bÞ
0 ðxÞ ¼ 1, it can be concluded that the single value condition (10) is identically

satisfied provided that A0 ¼ B0 ¼ 0.
Substituting Eq. (15) into (12) and using the following relation (Shen and Kuang, 1998)

cW ðrÞP ða;bÞ
k ðrÞ þ 1

p

Z 1

�1
W ðuÞP ða;bÞ

k ðuÞ du
u� r

¼
ð1þc2Þ1=2

2
P ð�a;�bÞ
k�1 ðrÞ ðjrj < 1Þ;

ð1þc2Þ1=2
2

½ðr � 1Þaðr þ 1ÞbP ða;bÞ
k ðrÞ þ G1

k ðrÞ
 ðjrj > 1Þ;

8<
:

ð18Þ

where G1
k ðrÞ is the principal part of WkðrÞP ða;bÞ

k ðrÞ at infinity, the singularity of Eq. (12) can be eliminated.
Then using Eq. (17), the following algebraic equations are deduced

XN
k¼1

½T 11lk Ak þ T 12lk Bk
 ¼ Le1l ;

XN
k¼1

½T 21lk Ak þ T 22lk Bk
 ¼ Le2l ;

ð19Þ
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where

T ij
lk ¼

ð1þ c2i Þ
1=2

2
hð�ai ;�biÞ
k�1 dlðk�1Þdij þ

c
p

Z 1

�1

Z 1

�1
W�iðrÞP ð�ai ;�biÞ

l ðrÞqijðu; rÞWjðuÞP
ðaj;bjÞ
k ðuÞdudr;

Leil ¼
Z 1

�1
W�iðrÞP ð�ai ;�biÞ

l ðrÞLiðrÞdr ðl ¼ 0; 1; . . . ;N � 1; i; j ¼ 1; 2Þ;
ð20Þ

with W�jðxÞ ¼ ð1� xÞ�ajð1þ xÞ�bj and dij being the Kronecker Delta function.
After the constants Ak and Bk ðk ¼ 1; 2; . . . ;NÞ have been determined from Eqs. (19), define the

equivalent DSIF as

Ke
� ¼

Ke
�
II

Ke
�
I

" #
¼

ffiffiffiffiffi
2c

p
lim
r!1þ

ðr � 1Þa1 0

0 ðr � 1Þa2

� �
KwðrÞ

�
þ 1

p

Z 1

�1

wðuÞ
u� r

duþ c
p

Z 1

�1
Qðr; uÞwðuÞdu

�
:

ð21Þ

Then comparing the right-hand sides of Eqs. (11) and (12), one can obtain the relation between the actual
DSIF and the equivalent DSIF as

K� ¼ BRKe
�
: ð22Þ

Finally, the DSIFs (mode-I and II) at the right crack tip in the Laplace field can be deduced as

K�
II

K�
I

� �
¼

ffiffiffiffiffi
2c

p
BR

XN
k¼1

�ð1þc2
1
Þ1=2ffiffi
2

p 2b1P ða1;b1Þ
k ð1ÞAk

�ð1þc2
2
Þ1=2ffiffi
2

p 2b2P ða2;b2Þ
k ð1ÞBk

2
4

3
5: ð23Þ

Applying the inverse Laplace transforms by the method in Wang and Yu (2000), KI and KII in the time
domain can be obtained.

4. Examples and discussion

It is noted that in the calculation of qijðx; tÞ in (B.5), for most impact problems, there is no pole on the
integral path along the x-axis, and therefore the integrals in these equations can be calculated directly. To
illustrate the basic features of the solution, numerical calculations for cracked piezoelectric layers of PZT-
5H have been carried out. To compare with the results in Wang and Yu (2000), we consider only the mode-I
plane problem (i.e., s0 ¼ 0 and r0 6¼ 0) and our attention is focused on the mode-I DSIF though it is
coupled with the mode-II DSIF. For now, we assume h1 ¼ h. The following material parameters are used
(Narita and Shindo, 1998):

cð1Þ11 ¼ 12:6� 1010 N=m2; cð2Þ11 =c
ð1Þ
11 ¼ r1; cð1Þ13 ¼ 5:3� 1010 N=m2; cð2Þ13 =c

ð1Þ
13 ¼ r2;

cð1Þ33 ¼ 11:7� 1010 N=m2; cð2Þ33 =c
ð1Þ
33 ¼ r3; cð1Þ44 ¼ 3:53� 1010 N=m2; cð2Þ44 =c

ð1Þ
44 ¼ r4;

eð1Þ13 ¼ �6:5 C=m2; eð2Þ13 =e
ð1Þ
13 ¼ r5; eð1Þ33 ¼ 23:3 C=m2; eð2Þ33 =e

ð1Þ
33 ¼ r6;

eð1Þ15 ¼ 17:0 C=m2; eð2Þ15 =e
ð1Þ
15 ¼ r7; eð1Þ11 ¼ 151� 10�10 C=Vm; eð2Þ11 =e

ð1Þ
11 ¼ r8;

eð1Þ33 ¼ 130� 10�10 C=Vm; eð2Þ33 =e
ð1Þ
33 ¼ r9; qð1Þ ¼ 7500 Kg=m3; qð2Þ=qð1Þ ¼ r10:

For comparison, the non-dimensional parameters KI=KI0 and KII=KII0 are introduced, where
KI0 ¼ KII0 ¼ r0

ffiffiffi
c

p
. Furthermore, the normalized time vt=c is used with v ¼ ½ðcð1Þ33 þ eð1Þ

2

33 =eð1Þ33 Þ=qð1Þ
1=2.
Our results are plotted in Figs. 2–14. It can be seen that the DSIFs under impact increase quickly, reach

the maximal value and then drive to the corresponding static value. This can be understood by the impact
effect of the incident elastic waves and the diffraction of the crack and the free boundary. As the results of
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their superposition, the DSIFs increase rapidly and approach to the static state when the wave diffraction
drops off. It is also noted that the wave diffraction is related to the structural configuration and the material
parameters. This will be illustrated in what follows.
Figs. 2–4 indicate the effects of the crack configuration, including the ratio of the crack length to the

width of medium 1, c=h, and the ratio between the widths of the two layers, h2=h, on the dynamic response.
It is clearly shown from Figs. 2 and 3 that the larger the value of c=h, the higher is the maximal value of
the DSIF, and the stronger is the oscillation of the dynamic response of either a homogeneous material or a
laminated material. On the contrary, the larger the value of h2=h, the lower is the DSIF (Fig. 4). Therefore,
it can be concluded that the DSIF depends significantly on the free boundary.
The effects of material combinations can be seen from Figs. 5–14. It can be concluded from Figs. 5–8

that the different elastic moduli have different influence on the DSIF. The maximal value of the DSIF
decreases with the increase in the value of r1 (Fig. 5). The same phenomenon can also be found for the
combination parameters r2 (Fig. 6) and r4 (Fig. 8). On the contrary, the maximal value of the DSIF in-
creases as the value of r3 increases (Fig. 7). As seen from the Figs. 9 and 10, the DSIF may be retarded by
increasing the values of r1, r2, r4, r5 and r6.
Comparing with the effects of the elastic moduli, however, the effects of the combination parameters

of the piezoelectric coefficients are weaker distinctly. Furthermore, it is shown in Fig. 11 that the DSIF is

Fig. 2. Normalized mode-I DSIF versus normalized time for different values of c=h (h2=h ¼ 1=1:0, r1 ¼ r2 ¼ 1:0, r3 ¼ 2:0,
r4 ¼ � � � ¼ r10 ¼ 1:0).

Fig. 3. Normalized mode-I DSIF versus normalized time for different values of c=h (h2=h ¼ 1=1:0, r1 ¼ � � � ¼ r10 ¼ 1:0).
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Fig. 4. Normalized mode-I DSIF versus normalized time for different values of h2=h (c=h ¼ 1=1:0, r1 ¼ r2 ¼ 1:0, r3 ¼ 2:0,
r4 ¼ � � � ¼ r10 ¼ 1:0).

Fig. 5. Normalized mode-I DSIF versus normalized time for different values of r1 (c=h ¼ 1=1:0, h2=h ¼ 1=1:0, r2 ¼ � � � ¼ r10 ¼ 1:0).

Fig. 6. Normalized mode-I DSIF versus normalized time for different values of r2 (c=h ¼ 1=1:0, h2=h ¼ 1=1:0, r1 ¼ 1:0,
r3 ¼ � � � ¼ r10 ¼ 1:0).

1750 B. Gu et al. / International Journal of Solids and Structures 39 (2002) 1743–1756



Fig. 7. Normalized mode-I DSIF versus normalized time for different values of r3 (c=h ¼ 1=1:0, h2=h ¼ 1=1:0, r1 ¼ r2 ¼ 1:0,
r4 ¼ � � � ¼ r10 ¼ 1:0).

Fig. 8. Normalized mode-I DSIF versus normalized time for different values of r4 (c=h ¼ 1=1:0, h2=h ¼ 1=1:0, r1 ¼ � � � ¼ r3 ¼ 1:0,
r5 ¼ � � � ¼ r10 ¼ 1:0).

Fig. 9. Normalized mode-I DSIF versus normalized time for different values of r5 (c=h ¼ 1=1:0, h2=h ¼ 1=1:0, r1 ¼ � � � ¼ r4 ¼ 1:0,
r6 ¼ � � � ¼ r10 ¼ 1:0).
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Fig. 10. Normalized mode-I DSIF versus normalized time for different values of r6 (c=h ¼ 1=1:0, h2=h ¼ 1=1:0, r1 ¼ � � � ¼ r5 ¼ 1:0,
r7 ¼ � � � ¼ r10 ¼ 1:0).

Fig. 11. Normalized mode-I DSIF versus normalized time for different values of r7 (c=h ¼ 1=1:0, h2=h ¼ 1=1:0, r1 ¼ � � � ¼ r6 ¼ 1:0,
r8 ¼ � � � ¼ r10 ¼ 1:0).

Fig. 12. Normalized mode-I DSIF versus normalized time for different values of r8 (c=h ¼ 1=1:0, h2=h ¼ 1=1:0, r1 ¼ � � � ¼ r7 ¼ 1:0,
r9 ¼ r10 ¼ 1:0).
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always promoted no matter that the value of r7 increases or decreases from r7 ¼ 1, though the effect is not
dramatic. This means that the DSIF has the lowest value in a homogeneous medium. The combinations of
the dielectric constants, r8 and r9, have little influence on the DSIF, as shown in Figs. 12 and 13. The results
in Fig. 14 indicate that the time when the DSIF reaches the peak value increases as r10 increases. Generally,
a value of r10 lower than one leads to a lower peak value of the DSIF.
Comparing with the results of Wang and Yu (2000) for the case of a homogeneous material under the

impermeable electrical boundary conditions, the present paper emphasizes the effects of the material
combinations, which are of engineering significance.

5. Conclusions

The transient response of a Griffith crack between dissimilar piezoelectric layers subjected to mechanical
impacts under the permeable electrical boundary condition on crack surfaces is investigated by using the
integral transform and the Cauchy singular integral equation methods.

Fig. 13. Normalized mode-I DSIF versus normalized time for different values of r9 (c=h ¼ 1=1:0, h2=h ¼ 1=1:0, r1 ¼ � � � ¼ r8 ¼ 1:0,
r10 ¼ 1:0).

Fig. 14. Normalized mode-I DSIF versus normalized time for different values of r10 (c=h ¼ 1=1:0, h2=h ¼ 1=1:0, r1 ¼ � � � ¼ r9 ¼ 1:0).
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It is found from the numerical calculation that the ratio of the crack length to the layer width, c=h, has a
significant influence on the DSIF. With the increase in c=h, the maximal value of the DSIF increases and the
oscillation of the dynamic response becomes stronger. On the other hand, the maximal value of the DSIF
decreases with the increase in h2=h. Our analysis also shows that the dynamic response of an interface crack
depends to different extents on the combinations of different constitutive parameters of the piezoelectric
laminate. For a specific material (say medium 1 in the paper), increasing the ratios of some parameters of
the two materials (e.g., r1, r6) may inhibit the DSIF, while an increase in the ratios of some other parameters
(e.g., r3) may promote the DSIF. The dielectric constants of the two materials have little influence on the
DSIF.
The analysis on the effects of the crack configuration and the material parameters on the dynamic re-

sponse of a cracked piezoelectric laminate leads to the conclusion that to enhance the performance and
reliability of piezoelectric structures and devices, the materials should be chosen appropriately with a
combination of constitutive parameters to yield a low DSIF under impacts. The method presented in this
paper provides a tool for such a choice. Though the present work is centered on a permeable interface crack
between two piezoelectric layers subjected to mechanical loading, this analysis method can be extended
easily to other cases, e.g., electric loading or the insulating boundary condition on crack surfaces.
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Appendix A

The functions kðaÞ
j ðs; pÞ ðj ¼ 1; . . . ; 6Þ in Eqs. (7) are the roots of the following equation

Det½Dðs; p; kÞ
 ¼ 0; ðA:1Þ
where the matrix Dðs; p; kÞ is given by

Dðs; p; kÞ ¼
c44k

2 � c11s2 � qp2 ðc13 þ c44Þkð�isÞ ðe13 þ e15Þkð�isÞ
ðc13 þ c44Þkð�isÞ c33k

2 � c44s2 � qp2 e33k
2 � e15s2

ðe13 þ e15Þkð�isÞ e33k
2 � e15s2 �e33k

2 þ e11s2

2
4

3
5: ðA:2Þ

Then, the functions aðaÞj ðs; pÞ; bðaÞj ðs; pÞ ðj ¼ 1; . . . ; 6Þ in Eq. (7) can be obtained by

aj ¼

�d11ðs; p; kjÞ d13ðs; p; kjÞ
�d21ðs; p; kjÞ d23ðs; p; kjÞ

����
����

d12ðs; p; kjÞ d13ðs; p; kjÞ
d22ðs; p; kjÞ d23ðs; p; kjÞ

����
����
; bj ¼

d12ðs; p; kjÞ �d11ðs; p; kjÞ
d22ðs; p; kjÞ �d21ðs; p; kjÞ

����
����

d12ðs; p; kjÞ d13ðs; p; kjÞ
d22ðs; p; kjÞ d23ðs; p; kjÞ

����
����
; ðA:3Þ

where dmnðs; p; kÞ (m ¼ 1; 2; and n ¼ 1; 2; 3) are the components of matrix Dðs; p; kÞ.

Appendix B

The constant matrixes A and B in Eq. (9) can be expressed as

A ¼ 0 M12

M21 0

� �
; B ¼ M11 0

0 M22

� �
; ðB:1Þ
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where

Mij ¼ lim
s!1

½Kijðs; pÞ
; ði; j ¼ 1; 2Þ

K11 ¼ i
X6
j¼1

h8jD10j
ð�isÞD ; K12 ¼

X6
j¼1

h8jD11j
ð�isÞD ;

K21 ¼
X6
j¼1

h7jD10j
ð�isÞD ; K22 ¼ i

X6
j¼1

h7jD11j
ð�isÞD ;

ðB:2Þ

with D ¼ DetðHÞ and the H matrix being given below. hkj is the component of H of the kth line and the jth
row. Dkj is the algebraic complements corresponding to hkj. The components of H are given by

h1j ¼ cð1Þ13 ð
�

� isÞ þ cð1Þ33 a
ð1Þ
j kð1Þ

j þ eð1Þ33 b
ð1Þ
j kð1Þ

j

�
ek

ð1Þ
j h1 ; h1ðjþ6Þ ¼ 0;

h2j ¼ cð1Þ44 kð1Þ
j

h
þ cð1Þ44 a

ð1Þ
j ð � isÞ þ eð1Þ15 b

ð1Þ
j ð � isÞ

i
ek

ð1Þ
j h1 ; h2ðjþ6Þ ¼ 0;

h3j ¼ eð1Þ13 ð
h

� isÞ þ eð1Þ33 a
ð1Þ
j kð1Þ

j � eð1Þ33 b
ð1Þ
j kð1Þ

j

i
ek

ð1Þ
j h1 ; h3ðjþ6Þ ¼ 0;

h4j ¼ 0; h4ðjþ6Þ ¼ cð2Þ13 ð
h

� isÞ þ cð2Þ33 a
ð2Þ
j kð2Þ

j þ eð2Þ33 b
ð2Þ
j kð2Þ

j

i
e�kð2Þj h2 ;

h5j ¼ 0; h5ðjþ6Þ ¼ cð2Þ44 kð2Þ
j

h
þ cð2Þ44 a

ð2Þ
j ð � isÞ þ eð2Þ15 b

ð2Þ
j ð � isÞ

i
e�kð2Þj h2 ;

h6j ¼ 0; h6ðjþ6Þ ¼ eð2Þ13 ð
h

� isÞ þ eð2Þ33 a
ð2Þ
j kð2Þ

j � eð2Þ33 b
ð2Þ
j kð2Þ

j

i
e�kð2Þj h2 ;

h7j ¼ cð1Þ13 ð
h

� isÞ þ cð1Þ33 a
ð1Þ
j kð1Þ

j þ eð1Þ33 b
ð1Þ
j kð1Þ

j

i
;

h7ðjþ6Þ ¼ � cð2Þ13 ð
h

� isÞ þ cð2Þ33 a
ð2Þ
j kð2Þ

j þ eð2Þ33 b
ð2Þ
j kð2Þ

j

i
;

h8j ¼ cð1Þ44 kð1Þ
j

h
þ cð1Þ44 a

ð1Þ
j ð � isÞ þ eð1Þ15 b

ð1Þ
j ð � isÞ

i
;

h8ðjþ6Þ ¼ � cð2Þ44 kð2Þ
j

h
þ cð2Þ44 a

ð2Þ
j ð � isÞ þ eð2Þ15 b

ð2Þ
j ð � isÞ

i
;

h9j ¼ eð1Þ13 ð
h

� isÞ þ eð1Þ33 a
ð1Þ
j kð1Þ

j � eð1Þ33 b
ð1Þ
j kð1Þ

j

i
;

h9ðjþ6Þ ¼ � eð2Þ13 ð
h

� isÞ þ eð2Þ33 a
ð2Þ
j kð2Þ

j � eð2Þ33 b
ð2Þ
j kð2Þ

j

i
;

h10j ¼ 1; h10ðjþ6Þ ¼ �1;
h11j ¼ að1Þj ; h11ðjþ6Þ ¼ �að2Þj ;

h12j ¼ bð1Þj ; h12ðjþ6Þ ¼ �bð2Þj ; ðj ¼ 1; 2; . . . ; 6Þ:

ðB:3Þ

Then the functions matrix Qðx; tÞ in Eq. (9) can be written as

Qðx; tÞ ¼ q11ðx; tÞ q12ðx; tÞ
q21ðx; tÞ q22ðx; tÞ

� �
ðB:4Þ

with

q11ðx; tÞ ¼
Z 1

0

½K11ðs; pÞ �M11
 sin½sðt � xÞ
ds;

q12ðx; tÞ ¼
Z 1

0

½K12ðs; pÞ �M12
 cos½sðt � xÞ
ds;
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q21ðx; tÞ ¼
Z 1

0

½K21ðs; pÞ �M21
 cos½sðt � xÞ
ds;

q22ðx; tÞ ¼
Z 1

0

½K22ðs; pÞ �M22
 sin½sðt � xÞ
ds:
ðB:5Þ
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